Abstract

The Ca2+-activated maxi K+ channel is predominant in the basolateral membrane of the surface cells in the distal colon. It may play a role in the regulation of the aldosterone-stimulated Na+ reabsorption from the intestinal lumen. Previous measurements of these basolateral K+ channels in planar lipid bilayers and in plasma membrane vesicles have shown a very high sensitivity to Ca2+ with a K0.5 ranging from 20 nm to 300 nm, whereas other studies have a much lower sensitivity to Ca2+. To investigate whether this difference could be due to modulation by second messenger systems, the effect of phosphorylation and dephosphorylation was examined. After addition of phosphatase, the K+ channels lost their high sensitivity to Ca2+, yet they could still be activated by high concentrations of Ca2+ (10 micron). Furthermore, the high sensitivity to Ca2+ could be restored after phosphorylation catalyzed by a cAMP dependent protein kinase. There was no effect of addition of protein kinase C. In agreement with the involvement of enzymatic processes, lag periods of 30-120 sec for dephosphorylation and of 10-280 sec for phosphorylation were observed. The phosphorylation state of the channel did not influence the single channel conductance. The results demonstrate that the high sensitivity to Ca2+ of the maxi K+ channel from rabbit distal colon is a property of the phosphorylated form of the channel protein, and that the difference in Ca2+ sensitivity between the dephosphorylated and phosphorylated forms of the channel protein is more than one order of magnitude. The variety in Ca2+ sensitivities for maxi K+ channels from tissue to tissue and from different studies on the same tissue could be due to modification by second messenger systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.