Abstract

Fluorescein conjugates of C5a (FL-C5a) and formyl methionine-leucine-phenylalanine-lysine (FL-FMLPL) have been used to determine how the expression of receptors for these peptides is regulated on human polymorphonuclear leukocytes (PMN). Video intensification microscopy showed that receptors for FL-C5a were homogeneously distributed on the surface of the PMN, but within minutes were mobilized into patches and internalized by the PMN. Internalization of C5a receptors was confirmed in studies in which external FL-C5a fluorescence was quenched by reducing the pH. A similar rapid internalization was observed with FL-FMLPL. This process was inhibited for both fluorescent ligands by monensin. Reexpression of C5a and formyl peptide receptors after internalization occurred with both receptors. By comparison, the rate of reexpression of formyl peptide receptors was much faster than that observed with C5a receptors with the half maximal reexpression time for each being 5 to 10 min and 18 to 60 min, respectively. C5a receptor reexpression was completely blocked by monensin suggesting receptor recycling, whereas monensin had little effect on FMLPL receptor reexpression. The reexpression of both receptors occurred in the presence of cycloheximide indicating that this process occurred independent of protein synthesis. Additional studies on formyl peptide receptor showed that when PMN were treated with ionomycin to fully mobilize the intracellular pool of FMLPL receptors, receptor reexpression failed to occur. These studies show that both C5a and formyl peptide receptors are internalized after binding ligand, but that their reexpression occurs through different mechanisms. C5a receptors appear to be recycled to the cell surface whereas formyl peptide receptors are reexpressed predominantly by translocation from an intracellular pool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.