Abstract

A considerable number of studies have examined how intrinsic factors regulate breast cancer cell behaviours; however, physical microenvironmental cues may also modulate cellular morphology, proliferation, and migration and mechanical properties. In the present study, the surrounding microenvironment of breast cancer cells was constructed using projection microstereolithography, enabling the investigation of the external environment's effects on breast cancer cell behaviours. A poly(ethylene) glycol diacrylate (PEGDA) solution was polymerized by programmable ultraviolet exposure to create arbitrary shapes with high biocompatibility, efficiency, flexibility and repeatability, and the resistance to cell attachment enabled the PEGDA coated film to hinder cell adhesion, allowing cells to grow in specific patterns. Furthermore, breast cancer cell morphology and mechanical properties were modified by altering the microenvironment. Proliferation was higher in breast cancer as compared to normal cells, consistent with the primary characteristic of malignant tumors. Moreover, breast cancer cells migrated more rapidly when grown in a narrow channel as compared to a wider channel. These findings enhance our understanding of the role of the microenvironment in breast cancer cell behaviours and can provide a basis for developing effective anticancer therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.