Abstract

Recent evidence suggests that T-box transcription factor brachyury plays an important role in lung cancer development and progression. However, the mechanisms underlying brachyury-driven cellular processes remain unclear. Here we found that fibroblast growth factor receptor 1/mitogen-activated protein kinase (FGFR1/MAPK) signaling regulated brachyury in lung cancer. Analysis of FGFR1-4 and brachyury expression in human lung tumor tissue and cell lines found that only expression of FGFR1 was positively correlated with brachyury expression. Specific knockdown of FGFR1 by siRNA suppressed brachyury expression and epithelial–mesenchymal transition (EMT) (upregulation of E-cadherin and β-catenin and downregulation of Snail and fibronectin), whereas forced overexpression of FGFR1 induced brachyury expression and promoted EMT in lung cancer cells. Activation of fibroblast growth factor (FGF)/FGFR1 signaling promoted phosphorylated MAPK extracellular signal-regulated kinase (ERK) 1/2 translocation from cytoplasm to nucleus, upregulated brachyury expression, and increased cell growth and invasion. In addition, human lung cancer cells with higher brachyury expression were more sensitive to inhibitors targeting FGFR1/MAPK pathway. These findings suggest that FGFR1/MAPK may be important for brachyury activation in lung cancer, and this pathway may be an appealing therapeutic target for a subset of brachyury-driven lung cancer.

Highlights

  • IntroductionPrevious studies on molecular profiling have defined potential subsets of lung cancer patients [1,2,3], which in turn has resulted in new molecularly targeted therapies [4]

  • Lung cancer is the most common cause of cancer death worldwide

  • Our present study showed that higher FGFR expressions in human lung tumor tissues and cell lines are positively associated with higher brachyury expression

Read more

Summary

Introduction

Previous studies on molecular profiling have defined potential subsets of lung cancer patients [1,2,3], which in turn has resulted in new molecularly targeted therapies [4]. Many of these therapies aim at biomarkers that are overexpressed in cancers and are involved in cell growth, proliferation, migration, and survival [5]. Brachyury expression has been detected in 41% of primary lung tumor tissues, including 48% of adenocarcinomas and 25% of squamous carcinomas [9]. Brachyury blocks lung cancer cell cycle progression and mediates tumor resistance to various conventional chemotherapies and radiation [14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.