Abstract

We assume that the evolution of the population is governed by a controlled McKendrick age-structured partial differential equation where the mortality rate and immigrated population levels are no longer known coefficients, but contingent regulation parameters chosen for a given purpose, for instance, for requiring that the population satisfies prescribed viability constraints depending on time and age. The Lotka renewal equation relating the boundary condition (number of births) to the integral with respect to age of the population is replaced by the introduction of another regulation parameter in the boundary condition, regarded as a natality policy. We may control it by its derivative, regarded as a natality decision. We then construct a regulation map, associating with the population level, the time and the age the subset of natality policies, a mortality rates and an immigration levels needed for governing viable evolutions of the population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.