Abstract

The extracellular calcium-sensing receptor (CaSR) monitors the systemic, extracellular, free ionized-calcium level ([Ca(2+)](o)) in organs involved in systemic [Ca(2+)](o) homeostasis. However, CaSR is also expressed in the nervous system, where its role is unknown. We found large amounts of CaSR in perinatal mouse sympathetic neurons when their axons were innervating and branching extensively in their targets. Manipulating CaSR function in these neurons by varying [Ca(2+)](o), using CaSR agonists and antagonists, or expressing a dominant-negative CaSR markedly affected neurite growth in vitro. Sympathetic neurons lacking CaSR had smaller neurite arbors in vitro, and sympathetic innervation density was reduced in CaSR-deficient mice in vivo. Hippocampal pyramidal neurons, which also express CaSR, had smaller dendrites when transfected with dominant-negative CaSR in postnatal organotypic cultures. Our findings reveal a crucial role for CaSR in regulating the growth of neural processes in the peripheral and central nervous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.