Abstract

The CNS has traditionally been considered an immune-privileged organ, but recent studies have identified a plethora of immune cells in the choroid plexus, meninges, perivascular spaces, and cribriform plate. Although those immune cells are crucial for the maintenance of CNS homeostasis and for neural protection against infections, they can lead to neuroinflammation in some circumstances. The blood and the lymphatic vasculatures exhibit distinct structural and molecular features depending on their location in the CNS, greatly influencing the compartmentalization and the nature of CNS immune responses. In this review, we discuss how endothelial cells regulate the migration and the functions of T cells in the CNS both at steady-state and in murine models of neuroinflammation, with a special focus on the anatomical, cellular, and molecular mechanisms implicated in EAE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call