Abstract

ASAP1 is an Arf GAP with a PH domain immediately N-terminal to the catalytic Arf GAP domain. PH domains are thought to regulate enzymes by binding to specific phosphoinositide lipids in membranes, thereby recruiting the enzyme to a site of action. Here, we have examined the functional relationship between the PH and Arf GAP domains. We found that GAP activity requires the cognate PH domain of ASAP1, leading us to hypothesize that the Arf GAP and PH domains directly interact to form the substrate binding site. This hypothesis was supported by the combined results of protection and hydrodynamic studies. We then examined the role of the PH domain in the regulation of Arf GAP activity. The results of saturation kinetics, limited proteolysis, FRET and fluorescence spectrometry support a model in which regulation of the GAP activity of ASAP1 involves a conformational change coincident with recruitment to a membrane surface, and a second conformational change following the specific binding of phosphatidylinositol 4,5-bisphosphate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.