Abstract

Previous studies have shown that the blood pressure response to isometric handgrip remains unchanged during reductions in preload induced by lower body negative pressure (LBNP). The purpose of the present study was to assess the beat-by-beat haemodynamic mechanisms allowing for precise control of mean arterial pressure (MAP). We have followed the cardiovascular variables involved in the regulation of MAP during isometric handgrip with and without additional application of LBNP during defined periods of the ongoing contraction. Sixteen subjects participated. Mean arterial blood pressure (MAP), heart rate (HR), stroke volume (SV), cardiac output (CO), blood flow velocity in the brachial artery, acral skin blood flow, as well as total (TPR) and local (LPR) peripheral resistance were continuously recorded/calculated before, during and after 2 min of handgrip both with and without concomitant LBNP. The main finding was that MAP increased at the same rate and to the same absolute level whether or not LBNP was applied. A uniform increase in MAP was observed even though the cardiovascular variables evolved differently in the periods with and without LBNP. At the onset of LBNP at -20 mmHg, there was a transient drop in MAP and a transient increase in HR, but within seconds, MAP was regulated back to the slope caused by the isometric handgrip proper. CO and SV, which were declining gradually, showed an additional marked but gradual reduction upon LBNP application. At the same time, both LPR and TPR increased markedly and continuously. In summary, the increase in MAP during isometric handgrip remained essentially unchanged by LBNP-induced alterations in preload. The increase in MAP was caused by a marked increase in peripheral resistance. This supports the concept of a central set point, continuously regulated upwards as long as the isometric handgrip persists. Furthermore, it reveals a considerable flexibility in the cardiovascular control mechanisms used to achieve the desired arterial pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call