Abstract

The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) and amyloid-β (Aβ) protein are closely associated with type 2 diabetes mellitus (T2DM) and Alzheimer's disease, respectively. Inhibitors of amyloid peptides include short peptides, aromatic organic molecules, nanoparticles, and even metal compounds. Sesquiterpenoid artemisinins are widely used in anti-malaria treatments, and they may modulate glucose homeostasis against diabetes. However, the antidiabetic mechanism of these compounds remains unclear. In this work, four compounds, namely, artemisinin (1), dihydroartemisinin (2), artesunate (3), and artemether (4), were exploited to inhibit the assembly behavior of hIAPP and compared with that of Aβ. Although structurally distinct from other aromatic inhibitors of amyloid peptides, these sesquiterpenoids effectively altered the two peptides' fibril morphologies and disaggregated the mature fibrils mostly to the monomers. The interaction of artemisinins with the two peptides demonstrated a spontaneous, exothermic, and entropy-driven binding process predominantly through hydrophobic and hydrogen bonding interactions. Moreover, they reversed cytotoxicity and membrane leakage by reducing peptides' oligomerization. The results suggested that these compounds had better inhibition and disaggregation capability against hIAPP than against Aβ. Furthermore, the effects of these compounds' structural modification on the amyloid fibril formation of the two peptides were observed. The molecular screening offered a new perspective for artemisinins as promising inhibitors against amyloidosis related diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.