Abstract

Streptococcus lactis metabolizes arginine by the arginine deiminase (ADI) pathway. Resting cells of S. lactis grown in the presence of galactose and arginine maintain a high intracellular ornithine pool in the absence of arginine and other exogenous energy sources. Addition of arginine results in a rapid release of ornithine concomitant with the uptake of arginine. Subsequent arginine metabolism results intracellularly in high citrulline and low ornithine pools. Arginine-ornithine exchange was shown to occur in a 1-to-1 ratio and to be independent of a proton motive force. The driving force for arginine uptake in intact cells is supplied by the ornithine and arginine concentration gradients formed during arginine metabolism. These results confirm studies of arginine and ornithine transport in membrane vesicles of S. lactis (A. J. M. Driessen, B. Poolman, R. Kiewiet, and W. N. Konings, Proc. Natl. Acad. Sci. USA, 84:6093-6097). The activity of the ADI pathway appears to be affected by the internal concentration of (adenine) nucleotides. Conditions which lower ATP consumption (dicyclohexylcarbodiimide, high pH) decrease the ADI pathway activity, whereas uncouplers and ionophores which stimulate ATP consumption increase the activity. The arginine-ornithine exchange activity matches the ADI pathway most probably by adjusting the intracellular levels of ornithine and arginine. Regulation of the ADI pathway and the arginine-ornithine exchanger at the level of enzyme synthesis is exerted by glucose (repressor, antagonized by cyclic AMP) and arginine (inducer). An arginine/ornithine antiport was also found in Streptococcus faecalis DS5, Streptococcus sanguis 12, and Streptococcus milleri RH1 type 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.