Abstract

In flowering plants, male fertility depends on proper cell differentiation in the anther. However, relatively little is known about the genes that regulate anther cell differentiation and function. Here, we report the analysis of a new Arabidopsis male sterile mutant, dysfunctional tapetum1 (dyt1). The dyt1 mutant exhibits abnormal anther morphology beginning at anther stage 4, with tapetal cells that have excess and/or enlarged vacuoles and lack the densely stained cytoplasm typical of normal tapetal cells. The mutant meiocytes are able to complete meiosis I, but they do not have a thick callose wall; they often fail to complete meiotic cytokinesis and eventually collapse. DYT1 encodes a putative bHLH transcription factor and is strongly expressed in the tapetum from late anther stage 5 to early stage 6, and at a lower level in meiocytes. In addition, the level of DYT1 mRNA is reduced in the sporocyteless/nozzle (spl/nzz) and excess microsporocytes1/extra sporogenous cell (ems1/exs) mutants; together with the mutant phenotypes, this suggests that DYT1 acts downstream of SPL/NZZ and EMS1/EXS. RT-PCR results showed that the expression levels of many tapetum-preferential genes are reduced significantly in the dyt1 mutant, indicating that DYT1 is important for the expression of tapetum genes. Our results support the hypothesis that DYT1 is a crucial component of a genetic network that controls anther development and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.