Abstract

Mycobacterium tuberculosis survives in antigen-presenting cells (APCs) such as macrophages and dendritic cells. APCs present antigens in association with major histocompatibility complex (MHC) class II molecules to stimulate CD4(+) T cells, and this process is essential to contain M. tuberculosis infection. Immune evasion allows M. tuberculosis to establish persistent or latent infection in macrophages and results in Toll-like receptor 2 (TLR2)-dependent inhibition of MHC class II transactivator expression, MHC class II molecule expression and antigen presentation. This reduction of antigen presentation might reflect a general mechanism of negative-feedback regulation that prevents excessive T cell-mediated inflammation and that M. tuberculosis has subverted to create a niche for survival in infected macrophages and evasion of recognition by CD4(+) T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.