Abstract
Cell cultures of Morinda citrifolia L. are capable of accumulating substantial amounts of anthraquinones. Chorismate formed by the shikimate pathway is an important precursor of these secondary metabolites. Isochorismate synthase (EC 5.4.99.6), the enzyme that channels chorismate into the direction of the anthraquinones, is involved in the regulation of anthraquinone biosynthesis. Other enzymes of the shikimate pathway such as deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) and chorismate mutase (EC 5.4.99.5) do not play a regulatory role in the process. The accumulation of anthraquinones is correlated with isochorismate synthase activity under a variety of conditions, which indicates that under most circumstances the concentration of the branchpoint metabolite chorismate is not a rate-limiting factor. Anthraquinone biosynthesis in Morinda is strongly inhibited by 2,4-D, but much less by NAA. Both auxins inhibit the activity of isochorismate synthase proportionally to the concomitant reduction in the amount of anthraquinone accumulated. However, the correlation between enzyme activity and rate of biosynthesis is less clear when the activity of the enzyme is very high. In this case, a limiting concentration of precursor may determine the extent of anthraquinone accumulation. Partial inhibition of chorismate biosynthesis by glyphosate leads to less anthraquinone accumulation, but also to a reduction in ICS activity. The complexity of the interference of glyphosate with anthraquinone biosynthesis is illustrated by the effect of the inhibitor in cell cultures of the related species Rubia tinctorum L. in these cells, glyphosate leads to an increase in anthraquinone content and a concomitant rise in ICS activity. All data indicate that the main point of regulation in anthraquinone biosynthesis is located at the entrance of the specific secondary route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.