Abstract
High-performance sodium storage at low temperature is urgent with the increasingly stringent demand for energy storage systems. However, the aggravated capacity loss is induced by the sluggish interfacial kinetics, which originates from the interfacial Na+ desolvation. Herein, all-fluorinated anions with ultrahigh electron donicity, trifluoroacetate (TFA-), are introduced into the diglyme (G2)-based electrolyte for the anion-reinforced solvates in a wide temperature range. The unique solvation structure with TFA- anions and decreased G2 molecules occupying the inner sheath accelerates desolvation of Na+ to exhibit decreased desolvation energy from 4.16 to 3.49 kJ mol-1 and 24.74 to 16.55 kJ mol-1 beyond and below -20 °C, respectively, compared with that in 1.0 M NaPF6-G2. These enable the cell of Na||Na3V2(PO4)3 to deliver 60.2% of its room-temperature capacity and high capacity retention of 99.2% after 100 cycles at -40 °C. This work highlights regulation of solvation chemistry for highly stable sodium-ion batteries at low temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.