Abstract

Redistribution of postsynaptic AMPA- (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-) subtype glutamate receptors may regulate synaptic strength at glutamatergic synapses, but the mediation of the redistribution is poorly understood. We show that AMPA receptors underwent clathrin-dependent endocytosis, which was accelerated by insulin in a GluR2 subunit-dependent manner. Insulin-stimulated endocytosis rapidly decreased AMPA receptor numbers in the plasma membrane, resulting in long-term depression (LTD) of AMPA receptor-mediated synaptic transmission in hippocampal CA1 neurons. Moreover, insulin-induced LTD and low-frequency stimulation-(LFS-) induced homosynaptic CA1 LTD were found to be mutually occlusive and were both blocked by inhibiting postsynaptic clathrin-mediated endocytosis. Thus, controlling postsynaptic receptor numbers through endocytosis may be an important mechanism underlying synaptic plasticity in the mammalian CNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.