Abstract
The mechanism of stimulation of amino acid transport system A caused by amino acid deprivation in L6 cells was investigated. In cells loaded with alpha-aminoisobutyric acid (AIB), amino acid deprivation increased the rate of proline uptake only after the intracellular [AIB] dropped below 7 mM. Efflux of proline was not sensitive to the presence of proline in the outer medium (with or without external Na+), suggesting that efflux through system A (and possibly uptake) is not susceptible to transinhibition. Transport (stimulated uptake) into amino acid-deprived cells and that into amino acid-supplemented cells differed in several chemical properties: 1) In the former group, transport was higher at lower pH values than in the latter, and the optimum pH values were 7.5 and 7.8, respectively. 2) Unlike proline uptake in supplemented cells, uptake in deprived cells was inhibited by 50% with N-ethylmaleimide (1 mM) or by 50 microM p-chloromercuribenzoate (PCMBS). Inhibition by PCMBS was not due to collapse of the Na+ gradient. The mercurial inhibited only the deprivation-induced stimulation of transport, bringing the rate of proline uptake to the "basal" uptake level observed in amino acid-supplemented cells. Proline uptake was not stimulated by a second deprivation following treatment with PCMBS and a supplementation-deprivation cycle. However, in untreated cells, or by reversing mercaptide formation with dithiotreitol, the second deprivation stimulated transport. Deprivation at 4 degrees C did not elicit stimulation of proline uptake. Cycloheximide prevented the stimulation and decreased the rate of proline uptake in deprived cells more efficiently than in supplemented cells. Actinomycin D prevented stimulation when added at the onset of deprivation. The above data indicate that stimulation of transport by deprivation is protein synthesis-dependent and that the stimulated transport had chemical properties distinct from the "basal" transport in supplemented cells. The evidence presented is consistent with a model of activation of a finite pool of transporters upon deprivation, the chemical characteristics of which differ from those of the "basal" transport system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.