Abstract

The cyclin-dependent kinase (cdk) inhibitor p21 inhibits cellular proliferation of many cell types, including T cells. Autoimmune models, however, have yielded conflicting results regarding the role of cdk inhibitors and T-cell function. The role of p21 in T-cell function after transplantation has not been investigated directly. We hypothesized that p21 plays an important role in alloantigen-driven responses in vitro in mixed lymphocyte cultures (MLC) and in vivo using the heterotopic murine cardiac allograft model. Wild type (WT) and p21-deficient (p21-/-) mice were used as recipients, and the effects of p21 overexpression were assessed by transplanting p21 adenoviral-transfected cardiac allografts. Enzyme-linked immunospot (ELISPOT) and 3H-thymidine incorporation were used to evaluate for T-cell priming and proliferation in vitro, whereas graft histology was evaluated for rejection. When stimulated with alloantigens in vitro, splenocytes from p21-/- mice mounted enhanced proliferative responses and decreased Th2 responses relative to their WT counterparts. No differences in Th1 responses were noted when p21-/- cells were stimulated with alloantigens in vitro; however, after cardiac transplantation, Th1 responses were enhanced in p21-/- recipients relative to WT mice. This enhanced in vivo Th1 response was associated with exacerbated graft rejection in p21-/- recipients. Interestingly, p21 transfection of WT allografts inhibited graft rejection and Th1 priming. p21 controls the intensity of the immune response posttransplantation, with overexpression inhibiting allograft rejection. Our data demonstrate that p21 controls T-cell priming and suggest that p21 and other cdk inhibitors may serve as potential targets for therapeutic manipulation of alloimmune responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.