Abstract

Global gyrokinetic simulations of mesoscale reversed shear Alfven eigenmodes (RSAE) excited by energetic particles (EP) in fusion plasmas find that RSAE amplitude and EP transport are much higher than experimental levels at nonlinear saturation, but quickly diminish to very low levels after the saturation if background microturbulence is artificially suppressed. In contrast, in simulations coupling micro-meso scales, the RSAE amplitude and EP transport decrease drastically at the initial saturation but later increases to the experimental levels in the quasisteady state with bursty dynamics due to regulation by thermal ion temperature gradient (ITG) microturbulence. The quasisteady state EP transport is larger for a stronger microturbulence. The RSAE amplitude in the quasisteady state ITG-RSAE turbulence from gyrokinetic simulations, for the first time, agrees very well with experimental measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.