Abstract

Airway ciliary activity is influenced by [Ca2+]i, but this mechanism is not fully understood. To investigate this relationship, ciliary activity and [Ca2+]i were measured simultaneously from airway epithelial ciliated cells. Ciliary beat frequency was determined, for each beat cycle, with phase-contrast optics and high-speed video imaging (at 240 images s−1) and correlated with [Ca2+]i determined, at the ciliary base, by fast imaging (30 images s−1) of fura-2 fluorescence. As a mechanically induced intercellular Ca2+ wave propagated through adjacent cells, [Ca2+]i was elevated from a baseline concentration of 45 to 100 nM, to a peak level of up to 650 nM. When the Ca2+ wave reached the ciliary base, the beat frequency rapidly increased, within a few beat cycles, from a basal rate of 6.4 to 11.6Hz at 20–23°C, and from 17.2 to 26.7Hz at 37°C. Changes in [Ca2+]i, above 350 nM, had no effect on the maximum beat frequency. We suggest that airway ciliary beat frequency is 1) controlled by a low range of [Ca2+]i acting directly at an axonemal site at the ciliary base and 2) that a maximum frequency is induced by a change in [Ca2+]i of ∼250–300 nM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.