Abstract
To reveal the regulatory mechanisms underlying age-dependent expression patterns, we characterized seven age-related genes, LaDAL1, LaAGL2-2, LaAGL2-3, LaAGL11, LaSOC1-1, LaAP2-1, and LaAP2-2 in terms of transcription and intron splicing in Larix kaempferi. Based on the exon-intron structures, we quantified the pre-mRNA levels and mature mRNA levels of these seven genes using quantitative reverse transcription polymerase chain reaction experiments. We found that the pre-mRNA levels manifested age-related patterns, indicating that their transcription was primarily regulated by age. By comparing the increasing or decreasing rates of the pre-mRNA and spliced mRNA levels, we found that their splicing efficiencies also changed with age. These results clearly show that both pre-mRNA transcription and splicing of five age-related genes are regulated by age, indicating that age-dependent expression patterns are controlled at both transcriptional and post-transcriptional levels, and unveiling the underlying regulatory molecular mechanisms should focus on the transcription factors, epigenetic regulation, and RNA splicing. These data provide new insights into the age-mediated regulation of gene expression in woody perennials in terms of longevity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.