Abstract

AimsLansoprazole (LPZ) is one of the most commonly prescribed drugs for treatment of acid-related diseases, and it is increasingly recognized for its potential application as an anti-diabetic therapy. Although LPZ target tissues remain poorly understood, possible sites of action include adipose tissue. In this study, we assessed effects of LPZ on adipocyte differentiation and function by using 3T3-L1 preadipocytes and HFD-induced obesity mice as an in vitro and in vivo model, respectively. Main methodsOil red O staining and intracellular triacylglycerol content were used to determine lipid accumulation. Glucose uptake was performed to measure mature adipocyte function. Expression of adipocyte genes was determined by qRT-PCR and immunoblotting. Key findingsLPZ has dual effects on differentiation of 3T3-L1 cells. At low concentrations, LPZ enhanced adipocyte differentiation via induction of PPARγ and C/EBPα, two master adipogenic transcription factors, as well as lipogenic proteins, ACC1 and FASN. Increasing of adipocyte number subsequently increased basal and insulin-stimulated glucose uptake, and expression of Glut4 mRNA. Conversely, high concentrations of LPZ strongly inhibited differentiation and expression of PPARγ and C/EBPα, and maintained expression of preadipocytes markers, β-catenin and Pref-1. Inhibition of adipogenesis by LPZ reduced mature adipocyte number, Glut4 mRNA expression and insulin-stimulated glucose uptake. In addition, treatment with LPZ at 200 mg/kg significantly reduced body weight gain and total fat mass in HFD-induced obese mice. SignificanceThese results indicate that effects of LPZ on adipocyte differentiation are dependent on concentration and are correlated with PPARγ and C/EBPα.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.