Abstract
In smooth muscles of mollusc Anodonta cygnea, hormones produce regulatory effects on the adenylyl cyclase (AC) signaling system via receptors of the serpentine (biogenic amine, isoproterenol, glucagon) and of tyrosine kinase (insulin) types. Intracellular mechanisms of their action are interconnected. Use of hormones, their antagonists, and pertussis toxin at the combined action of insulin and biogenic amines or of glucagon on the AC activity allows revealing possible intersection points in mechanisms of their action. The combined effect of insulin and serotonin or of glucagon leads to a decrease of stimulation of AC by these hormones, whereas at action of insulin and isoproterenol the AC-stimulatory effect of insulin is blocked, while the AC-inhibitory effect of isoproterenol is preserved both in the presence and in the absence of the non-hydrolyzed GTP analog - guanylylimidodiphosphate (GppNHp). Specific blocking of the AC-stimulatory serotonin effect by cyproheptadine - an antagonist of serotonin receptors - did not affect stimulation of AC by insulin. Beta-adrenoblockers (propranolol and alprenolol) interfered with inhibition of the AC activity by isoproterenol, but did not change the AC stimulation by insulin. Pertussis toxin blocked the AC-inhibitory effect of isoproterenol and attenuated the AC-stimulatory effect of insulin. Thus, in muscles of the mollusc Anodonta cygnea there have been revealed negative interrelations between the AC system, which are realized at the combined effect of insulin and serotonin or of glucagon, probably at the level of receptor of the serpentine type (serotonin, glucagon), while at action of insulin and isoproterenol - at the level of interaction of G1 protein and AC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Evolutionary Biochemistry and Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.