Abstract
This study tested the hypothesis that endogenous glucocorticoids regulate a putative neurotransmitter function of corticotropin-releasing factor (CRF) in the locus coeruleus (LC). LC spontaneous discharge and activation by intracerebroventricularly administered CRF, hypotensive challenge, sciatic nerve stimulation, and carbachol were compared in adrenalectomized and sham-operated halothane-anesthetized rats. LC spontaneous discharge was higher in adrenalectomized versus sham-operated rats. Intracoerulear microinfusion of a CRF antagonist decreased LC discharge rates of adrenalectomized rats to rates comparable with those observed in sham-operated rats but had no effect in sham-operated rats. The CRF dose-response curve was shifted in a complex manner in adrenalectomized rats, suggesting that a proportion of CRF receptors were occupied before CRF administration, and low doses of CRF were additive. Higher doses of CRF produced effects that were greater than predicted by simple additivity. Hypotensive challenge increased LC discharge rates of adrenalectomized rats by a magnitude greater than that predicted on the basis of additivity. In contrast, LC responses to carbachol and sciatic nerve stimulation were similar in both groups. The results suggest that adrenalectomy enhances tonic and stress-induced CRF release within the LC and also alters postsynaptic sensitivity of LC neurons to CRF. Because adrenalectomy also alters release of neurohormone CRF, the present study suggests that CRF actions as a neurohormone and as a neurotransmitter in the LC may be co-regulated. Such parallel regulation may underlie the coexistence of neuroendocrine and noradrenergic dysfunctions in stress-related psychiatric disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.