Abstract

Patients with growth hormone deficiency (GHD) have many clinical features in common with Cushing's syndrome (glucocorticoid excess) – notably visceral obesity, insulin resistance, muscle myopathy and increased vascular mortality. Within key metabolic tissues, 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) converts cortisone to the active glucocorticoid, cortisol (11-dehydrocorticosterone and corticosterone in rodents respectively), and thus amplifies local glucocorticoid action.We hypothesize that 11β-HSD1 expression is negatively regulated by growth hormone (GH), and that GHD patients have elevated 11β-HSD1 within key metabolic tissues (leading to increased intracellular cortisol generation) which contributes to the clinical features of this disease.To identify the impact of GH excess/resistance on 11β-HSD1 in vivo, we measured mRNA expression in key metabolic tissues of giant mice expressing the bovine GH (bGH) gene, dwarf mice with a disrupted GH receptor (GHRKO) gene and mice expressing a gene encoding a GH receptor antagonist (GHA). Additionally, we assessed urine steroid markers of 11β-HSD1 activity in both GHRKO and bGH animals.11β-HSD1 expression was decreased in gastrocnemius muscle (0.43-fold, p < 0.05), subcutaneous adipose (0.53-fold, p < 0.05) and epididymal adipose tissue (0.40-fold, p < 0.05), but not liver, in bGH mice compared to WT controls. This was paralleled by an increased percentage of 11-DHC (inactive glucocorticoid) present in the urine of bGH mice compared to WT controls (2.5-fold, p < 0.01) - consistent with decreased systemic 11β-HSD1 activity. By contrast, expression of 11β-HSD1 was increased in the liver of GHRKO (2.7-fold, p < 0.05) and GHA mice (2.0-fold, p < 0.05) compared to WT controls, but not gastrocnemius muscle, subcutaneous adipose tissue or epididymal adipose tissue.In summary, we have demonstrated a negative relationship between GH action and 11β-HSD1 expression which appears to be tissue specific. These data provide evidence that increased intracellular cortisol production within key tissues may contribute to metabolic disease in GHD patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call