Abstract

Stimulation of (1-3)-beta-glucan receptors results in Ca(2+) influx through receptor-operated channels in alveolar macrophages (AMs), but the mechanism(s) regulating Ca(2+) influx is still undefined. In this study we investigated the role of protein kinase C (PKC) regulation of Ca(2+) influx in the NR8383 AM cell line using the particulate (1-3)-beta-glucan receptor agonist zymosan. PKC inhibition with calphostin C (CC) or bisindolymaleimide I (BSM) significantly reduced zymosan-induced Ca(2+) influx, whereas activation of PKC with phorbol-12-myristate 13-acetate (PMA) or 1, 2-dioctanoyl-sn-glycerol (DOG) mimicked zymosan, inducing a concentration-dependent Ca(2+) influx. This influx was dependent on extracellular Ca(2+) and inhibited by the receptor-operated Ca(2+) channel blocker SK&F96365, indicating that zymosan and PKC activate Ca(2+) influx through a similar pathway. NR8383 AMs expressed one new PKC isoform (delta) and two atypical PKC isoforms (iota and lambda), but conventional PKC isoforms were not present. Stimulation with zymosan resulted in a translocation of PKC-delta from the cytosol to the membrane fraction. Furthermore, inhibition of protein tyrosine kinases (PTKs) with genistein prevented zymosan-stimulated Ca(2+) influx and PKC-delta translocation. These results suggest that PKC-delta plays a critical role in regulating (1-3)-beta-glucan receptor activated Ca(2+) influx in NR8383 AMs and PKC-delta translocation is possibly dependent on PTK activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.