Abstract

Neurodegeneration in Parkinson’s disease is correlated with the occurrence of Lewy bodies, intracellular inclusions containing aggregates of the intrinsically disordered protein (IDP) α-Synuclein1. The aggregation propensity of α-Synuclein in cells is modulated by specific factors including posttranslational modifications2,3, Abelson-kinase-mediated phosphorylation4,5 and interactions with intracellular machineries such as molecular chaperones, although the underlying mechanisms are unclear6–8. Here, we systematically characterize the interaction of molecular chaperones with α-Synuclein in vitro as well as in cells at the atomic level. We find that six vastly different molecular chaperones commonly recognize a canonical motif in α-Synuclein, consisting of the amino-terminus and a segment around Tyr39, hindering its aggregation. In-cell NMR experiments9 show the same transient interaction pattern preserved inside living mammalian cells. Specific inhibition of the interactions between α-Synuclein and the chaperones Hsc70 and Hsp90 yields transient membrane binding and triggers a remarkable re-localization of α-Synuclein to mitochondria and concomitant aggregate formation. Phosphorylation of α-Synuclein at Tyr39 directly impairs the chaperone interaction, thus providing a functional explanation for the role of Abelson kinase in Parkinson’s disease progression. Our results establish a master regulatory mechanism of α-Synuclein function and aggregation in mammalian cells, extending the functional repertoire of molecular chaperones and opening new perspectives for therapeutic interventions for Parkinson’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call