Abstract

BackgroundSurfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities.ResultsIn this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14–C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14–C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities.ConclusionThis study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure–activity relationships of surfactin and other lipopeptide compounds.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call