Abstract

To identify the alternative splicing isoform of mouse sweet taste receptor T1R2, and investigate the effect of lipopolysaccharide (LPS) local injection on T1R2 alternative splicing and the function of sweet taste receptor as one of the bacterial virulence factors. After mouse taste bud tissue isolation was conducted, RNA extraction and reverse transcription polymerase chain reaction (PCR) were performed to identify the splicing isoform of T1R2. Heterologous expression experiments in vitro were utilized to detect how the T1R2 isoform regulated the function of sweet taste receptors. The effect of local LPS injection on the expression of the T1R2 isoform was measured by real-time fluorescent quantitative PCR. T1R2 splicing isoform T1R2_Δe3p formed sweet taste receptors with T1R3, which could not be activated by sweet taste stimuli and significantly downregulated the function of canonical T1R2/T1R3. Local LPS injection significantly increased the expression ratio of T1R2_Δe3p in mouse taste buds. LPS stimulation affects the alternative splicing of mouse sweet taste receptor T1R2 and significantly upregulates the expression of non-functional isoform T1R2_Δe3p, suggesting that T1R2 alternative splicing regulation may be one of the mechanisms by which microbial infection affects host taste perception.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.