Abstract

We characterized the role of guanine nucleotide dissociation inhibitor (GDI) in RhoA/Rho-kinase-mediated Ca2+ sensitization of smooth muscle. Endogenous contents (approximately 2-4 microM) of RhoA and RhoGDI were near stoichiometric, whereas a supraphysiological GDI concentration was required to relax Ca2+ sensitization of force by GTP and guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS). GDI also inhibited Ca2+ sensitization by GTP. G14V RhoA, by alpha-adrenergic and muscarinic agonists, and extracted RhoA from membranes. GTPgammaS translocated Rho-kinase to a Triton X-114-extractable membrane fraction. GTP. G14V RhoA complexed with GDI also induced Ca2+ sensitization, probably through in vivo dissociation of GTP. RhoA from the complex, because it was reversed by addition of excess GDI. GDI did not inhibit Ca2+ sensitization by phorbol ester. Constitutively active Cdc42 and Rac1 inhibited Ca2+ sensitization by GTP. G14V RhoA. We conclude that 1) the most likely in vivo function of GDI is to prevent perpetual "recycling" of GDP. RhoA to GTP. RhoA; 2) nucleotide exchange (GTP for GDP) on complexed GDP. RhoA/GDI can precede translocation of RhoA to the membrane; 3) activation of Rho-kinase exposes a hydrophobic domain; and 4) Cdc42 and Rac1 can inhibit Ca2+ sensitization by activated GTP. RhoA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.