Abstract
The sarcoplasmic reticulum (SR), regulates the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)) in vascular smooth muscle. Release from the SR is controlled by two intracellular receptor/channel complexes, the ryanodine receptor (RyR) and the inositol 1,4,5-trisphosphate receptor (IP(3)R). These receptors may be regulated by the accessory FK506-binding protein (FKBP) either directly, by binding to the channel, or indirectly via FKBP modulation of two targets, the phosphatase, calcineurin or the kinase, mammalian target of rapamycin (mTOR). Single portal vein myocytes were voltage-clamped in whole cell configuration and [Ca(2+)](cyto) measured using fluo-3. IP(3)Rs were activated by photolysis of caged IP(3) and RyRs activated by hydrostatic application of caffeine. FK506 which displaces FKBP from each receptor (to inhibit calcineurin) increased the [Ca(2+)](cyto) rise evoked by activation of either RyR or IP(3)R. Rapamycin which displaces FKBP (to inhibit mTOR) also increased the amplitude of the caffeine-evoked, but reduced the IP(3)-evoked [Ca(2+)](cyto) rise. None of the phosphatase inhibitors, cypermethrin, okadaic acid or calcineurin inhibitory peptide, altered either caffeine- or IP(3)-evoked [Ca(2+)](cyto) release; calcineurin did not contribute to FK506-mediated potentiation of RyR- or IP(3)R-mediated Ca(2+) release. The mTOR inhibitor LY294002, like rapamycin, decreased IP(3)-evoked Ca(2+) release. Ca(2+) release in portal vein myocytes, via RyR, was modulated directly by FKBP binding to the channel; neither calcineurin nor mTOR contributed to this regulation. However, IP(3)R-mediated Ca(2+) release, while also modulated directly by FKBP may be additionally regulated by mTOR. Rapamycin inhibition of IP(3)-mediated Ca(2+) release may be explained by mTOR inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.