Abstract

Abstract: The effects of monovalent and divalent cations on binding of [3H]spiroperidol to dopamine receptors in rat corpus striatum were studied. Both monovalent and divalent cations as well as several chelating agents increase the number of [3H] spiroperidol binding sites. Manganese is most potent, enhancing binding at 1 μm concentration, while magnesium and calcium are at least two orders of magnitude less potent and the monovalent cations sodium, potassium and lithium are still weaker. Divalent cations enhance the potency of dopaminergic agonists in competing for [3H]spiroperidol binding, an effect which appears to be independent of the ionic augmentation of [3H]spiroperidol binding. Divalent cations decrease both the association and dissociation rates of [3H]spiroperidol binding to dopamine receptor sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.