Abstract

The bile canalicular membrane contains four specific ATP-dependent transport processes that are involved in secretion of bile acids, non-bile acid organic anions (mrp1), phospholipids (mdr2), and organic cations (mdr3). The aim of this study was to determine how the canalicular presence of these transport proteins is regulated. Canalicular membrane vesicles (CMV) were prepared from livers of rats treated with taurocholate (TC) and/or dibutyryl-adenosine 3',5'-cycle monophosphate (DBcAMP) with and without pretreatment with colchicine. Transport studies were performed with radiolabeled substrates. Changes in the relative amounts of transport proteins were determined by Western blots. Compared with controls, the specific activity of each of the transport processes was enhanced 1.5- and 3-fold with TC and DBcAMP treatments, respectively. Western blots revealed the same increases with mdr2 and mdr3. Pretreatment of rats with colchicine prevented these responses fully with TC treatment, whereas only partial prevention was obtained with DBcAMP treatment. Besides the ATP-dependent transporters, the relative specific activities of the canalicular membrane ectoenzyme markers, leucine aminopeptidase and gamma-glutamyltranspeptidase, were also affected the same way. These results suggest that TC and DBcAMP increase the specific activity of the canalicular ATP-dependent transport proteins and some canalicular membrane ectoenzymes by stimulating an increase in the relative amounts of these proteins in the membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.