Abstract

Neotropical floodplain lakes provide an excellent opportunity to examine the regulation and stability of fish assemblages. At low water, when lakes are separated, fish are concentrated in the lakes and are presumably subject to strong interspecific interactions that can shape assemblage structure. At high water, when the lakes and river channels become broadly interconnected, ample potential exists for alteration of assemblage structure because eggs, larvae, and older fish may undergo spatial reshuffling among waterbodies. Twenty lakes of the Orinoco River floodplain in Venezuela were surveyed in the early and late dry seasons of two consecutive years. Marked differences in assemblage structure among lakes were established in the early dry season. Changes in assemblage structure during the dry season were large and detectable even at the ordinal level; they reflected a strong reduction of visually oriented fish relative to fish with adaptations to low light. Changes were similar in the two years and were apparently due to species-specific differences in mortality, which was high over the dry season. The annual flood is a strong natural fluctuation that greatly modifies assemblage properties during the wet season. Nevertheless, the potential for alteration of assemblage structure by reshuffling was not realized: assemblage properties early and late in the dry season were similar in the two years, indicating a regular and predictable annual cycle of change in assemblage structure. This regularity can be explained by mechanisms of regulation which appear to be linked to piscivory and the optical environment. In contrast with the prevailing views on neotropical fish assemblages, there seems to be a strong deterministic component to assemblage structure and dynamics in Orinoco floodplain lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call