Abstract

The relationship between insulin-like growth factor I (IGF-I), a hormone which has potent metabolic effects and stimulates protein synthesis, and prolactin and oestradiol was examined to investigate a possible mechanism for the luteal cell hypertrophy that is responsible for the increase in size of the corpus luteum. A luteal cell line (GG-CL) derived from large luteal cells of the pregnant rat corpus luteum was used. IGF-I, IGF-I receptor and oestrogen receptor beta mRNA contents were determined by semiquantitative RT-PCR. The results revealed that prolactin upregulates the expression of IGF-I mRNA in luteal cells, but not that of its receptor. IGF-I had no effect on the expression of its receptor but caused a dose-related increase in the expression of oestrogen receptor beta. Furthermore, whereas IGF-I upregulated oestrogen receptor beta expression, oestradiol downregulated expression of mRNA for both IGF-I and its receptor. This effect of oestradiol is not mediated through progesterone which is stimulated by oestradiol in the corpus luteum. The developmental studies indicate that mRNA for IGF-I and its receptor are not expressed in tandem throughout pregnancy. Whereas the receptor mRNA is expressed at higher concentrations in early pregnancy, that of its ligand is highly expressed close to parturition. Collectively, the results indicate that prolactin stimulates luteal IGF-I production, which in turn acts on the luteal cell to stimulate expression of oestrogen receptor beta. Luteal cells with increased oestrogen receptor beta can respond fully to oestradiol, leading to cell hypertrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call