Abstract
Glutamine synthetase from a marine enterobacterium, Photobacterium phosphoreum, was purified to homogeneity from cells grown in glycerol-yeast extract medium. The purified enzyme had a molecular weight of approximately 670,000 and a subunit size of 56,000, i.e. larger than that of the enzyme from E. coli. Regulation of the glutamine synthetase activity by adenylylation/deadenylylation was demonstrated on snake venom phosphodiesterase treatment. The state of adenylylation appeared to influence both the biosynthetic and gamma-glutamyltransferase activities of P. phosphoreum glutamine synthetase similar to in the case of the E. coli enzyme. The enzyme activity was controlled by adenylylation and possibly in combination with feedback inhibition by alanine, serine, and glycine, metabolites which are especially effective in inhibiting P. phosphoreum glutamine synthetase. When either Mn2+ or Mg2+ was added to the relaxed (divalent cation-free) enzyme, similar UV-difference spectra were obtained for the enzyme, indicating that the conformational states induced by these cations were also similar. The profile of these spectra varied from those published for E. coli, and three peaks were four 1 at 282.5, 288.5, and 298 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.