Abstract
Post-translational modification (PTM) of proteins serves as a major regulatory check-point for cellular signaling processes during stress-related responses. S-Nitrosylation is a nitric oxide (NO) dependent PTM wherein NO reacts with the thiol group of redox-sensitive cysteine residue of the proteins. Accumulation of NO is often associated with stress in plants and many regulatory proteins involved in stress-induced signaling carries redox-sensitive cysteine residue, which makes S-nitrosylation a potentially important PTM. However, like any other signaling event, S-nitrosylation is also highly regulated. The unique chemistry of NO to exist in different reactive forms and the spatio-temporal regulation on their reactivity towards the target thiols is the driving force of S-nitrosylation signaling mechanism. Attempts to study the precise mechanism responsible for S-nitrosothiol formation have been hampered due to the technical limitations caused by extremely dynamic nature of this signaling event and the variety of reactions that NO undergo. However, the role of S-nitrosylation in regulating various biological processes in plants is now evident. This chapter will focus on the mechanism of S-nitrosylation and its regulation and function in plant stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.