Abstract
Controlling liquid adhesion on special wetting surface is significant in many practical applications. In this paper, an easy self-assembled monolayer technique was advanced to modify nanostructured copper substrates, and tunable adhesive underwater superoleophobic surfaces were prepared. The surface adhesion can be regulated by simply varying the chain length of the n-alkanoic acids, and the tunable adhesive properties can be ascribed to the combined action of surfaces nanostructures and related variation in surface chemistry. Meanwhile, the tunable ability is universal, and the oil-adhesion controllability is suitable to various oils including silicon oil, n-hexane, and chloroform. Finally, on the basis of the special tunable adhesive properties, some applications of our surfaces including droplet storage, transfer, mixing, and so on are also discussed. The paper offers a novel and simple method to prepare underwater superoleophobic surfaces with regulated adhesion, which can potentially be applied in numerous fields, for instance, biodetection, microreactors, and microfluidic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.