Abstract

Fluorinated non-fullerene acceptors (NFAs) usually have planar backbone and a higher tendency to crystallize compared to their non-fluorinated counterparts, which leads to enhanced charge mobility in organic solar cells (OSCs). However, this self-organization behavior may result in excessive phase separation with electron donors and thereby deteriorate device efficiency. Herein, we demonstrate an effective approach to tune the molecular organization of a fluorinated NFA (INPIC-4F), and its phase separation with the donor PBDB-T, by varying the casting solvent. A prolonged film drying time encourages the crystallization of INPIC-4F into spherulites and consequently results in excessive phase separation, leading to a low device power conversion efficiency (PCE) of 8.1%. Contrarily, a drying time leads to fine mixed domains with inefficient charge transport properties, resulting in a moderate device PCE of 11.4%. An intermediate film drying time results in the formation of face-on π-π stacked PBDB-T and INPIC-4F domains with continuous phase-separated networks, which facilitates light absorption, exciton dissociation as well as balanced charge transport towards the electrode, and achieves a remarkable PCE of 13.1%. This work provides a rational guide for optimizing the molecular ordering of NFAs and electron donors for high device efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.