Abstract

Protection against microbial invasion depends not only on the host’s ability to mount an immune response, but on its ability to mount the correct immune response. Whether an antibody response is protective or not depends on both the fine antigenic specificity, that may be associated with particular idiotypes and epitope binding characteristics, and the isotype, determining antibody effector function. Thus, both the variable and the constant region of the antibodies induced by a peptide mimotope must be considered when assessing the success of any immunization. Phosphorylcholine (PC), an epitope present on the cell-wall C-polysaccharide of all pneumococcal serotypes, is capable of eliciting a protective antibody response to pneumococcal infection in mice and provides an attractive model system for understanding the immune response generated by peptide mimics. In this system, both the idiotype and isotype of protective antibodies have been determined and the characteristics of the in vivo response are well described and highly reproducible. We describe here the immune response generated by two peptide mimics of PC. Mice immunized with the peptides developed antibodies binding PC and C-polysaccharide. The idiotypic profile of the response differed depending on the peptide, but never included canonical T15 + antibodies. The isotype of the response to peptide mimics differed depending on a combination of peptide and adjuvant, and included both IgG2a and IgG2b antibodies which are not typically seen in the response to PC. Thus, peptide mimotopes may elicit anti-polysaccharide responses, but fail to elicit the idiotypes and isotypes observed in the protective response to the microbial antigen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.