Abstract

Regulating the electronic structure of noble metals through metal alloy–support interactions is significant for hydrogen economy. Herein, a PdAg alloy highly dispersed on the surface of Ti3C2 is successfully designed through a simple microwave-assisted reduction method. The catalytic activity of PdAg alloys with various molar ratios manifests obviously enhanced catalytic activity compared to monometallic catalysts toward hydrogen generation in ammonia borane (AB) hydrolysis. Specifically, Pd4Ag1/Ti3C2 presents an optimal turnover frequency (TOF) value of 1296 min−1 at room temperature and a lower activation energy (Ea) of 38.8 kJ mol-1. Through the experimental results, the formation of a PdAg alloy with the introduction of the second metal Ag adjusts the electronic structure around Pd and enhances the catalytic activity. Additionally, the metal alloy–support interaction between Ti3C2 and the PdAg alloy significantly promotes hydrogen generation during the hydrolysis of AB. This study provides new ideas and a reasonable basis for heterogeneous catalysis based on bimetallic catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call