Abstract

It is significant but challenging to understand the property evolution of metal nanoclusters by orientated regulation of the electronic structure. Previous research has demonstrated that the optical properties of metal nanoclusters with anisotropic structures are greatly impacted by their longitudinal electronic structure. However, the manipulation of optical properties of metal nanoclusters by regulating their electronic structure through longitudinal dithiolate substitutions has not yet been reported. In this study, we first achieved the longitudinal single-dithiolate replacement of metal nanoclusters and obtained two novel nanoclusters: Au28(SPh-tBu)18(SCH2SCH2S) and Au28(SPh-tBu)18(SCH2CH2CH2S). Both experimental and theoretical results demonstrated the regulation of the electronic structure (dipole moment) in the z (longitudinal) and x directions, resulting in absorption redshift and photoluminescence (polarity) enhancement. These findings not only deepen the understanding of the property-electronic structure correlation of metal nanoclusters but also provide guidance for their subtle property tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.