Abstract

Heterogeneous electro-Fenton degradation with 1O2 and •OH generated from O2 reduction is cost-effective for the removal of refractory organic pollutants from wastewater. As 1O2 is more tolerant to background constituents such as salt ions and a high pH value than •OH, tuning the production of 1O2 and •OH is important for efficient electro-Fenton degradation. However, it remains a great challenge to selectively produce 1O2 and improve the species yield. Herein, the electronic structure of atomically dispersed Cu-N4 sites was regulated by doping electron-deficient B into porous hollow carbon microspheres (CuBN-HCMs), which improved *O2 adsorption and significantly enhanced 1O2 selectivity in electro-Fenton degradation. Its 1O2 yield was 2.3 times higher than that of a Cu single-atom catalyst without B doping. Meanwhile, •OH was simultaneously generated as a minor species. The CuBN-HCMs were efficient for the electro-Fenton degradation of phenol, sulfamethoxazole, and bisphenol A with a high mineralization efficiency. Its kinetic constants showed insignificant changes under various anions and a wide pH range of 1-9. More importantly, it was energy-efficient for treating actual coking wastewater with a low energy consumption of 19.0 kWh kgCOD-1. The superior performance of the CuBN-HCMs was contributed from 1O2 and •OH and its high 1O2 selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.