Abstract
We study the regulation of the electronic and spin transport properties of the WGe2N4 monolayer by adsorbing 4d transition metal atoms (Y-Cd) using density functional theory combined with non-equilibrium Green's function. It is found that the adsorption of transition metal atoms (except Pd, Ag and Cd atoms) can introduce a magnetic moment into the WGe2N4 monolayer. Among the transition metal atoms, the adsorption of Nb and Rh atoms transforms WGe2N4 from a semiconductor to a half-metal and a highly spin-polarized semiconductor, respectively. The half-metallic Nb-adsorbed WGe2N4 system is selected to investigate the spin transport properties, and a high magnetoresistance ratio of 107% is achieved. In both parallel and antiparallel magnetization configurations, the spin filtering efficiency reaches close to 100% in the whole bias range, and the antiparallel magnetization configuration exhibits a dual spin filtering effect with a rectification ratio of up to 104. Our study predicts that the adsorption of 4d transition metal heteroatoms is an effective method to regulate the electronic and magnetic properties of WGe2N4 towards high-performance spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.