Abstract

Developing highly efficient electrocatalysts is crucially significant for the application of advanced energy conversion. The Fe-N-C single-atom catalyst is promising for CO2 electroreduction reaction (CO2RR) but suffers from insufficient intrinsic activity and inferior conductivity, which could be addressed by redistributing the electron density via heteroatom doping. Herein, we synthesized S-doped Fe-N-C (Fe-SN-C) as an advanced electrocatalyst for CO2RR using a simple trapping-pyrolysis strategy. Density functional theory calculations and experimental results indicate that S doping increases the d-band electrons and conductivity of Fe-SN-C by electron donating, and thus boosts *CO desorption during the CO2RR process and suppresses the competing hydrogen evolution reaction. Consequently, Fe-SN-C exhibits the maximum CO faradaic efficiency of 93% at -0.5 V and the highest partial current density of 10.1 mA cm-2 at -0.8 V for 2e- CO2RR. This finding provides a feasible and controllable method to achieve advanced electrocatalysts for efficient energy conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call