Abstract

Owing to the extremely high theoretical specific capacity and energy density, the catalytic materials of lithium-sulfur (Li-S) batteries are widely explored. The “shuttle effect”, poor electrode conductivity, and slow charge–discharge reaction dynamics are some of the key issues that have seriously hampered their commercialization process. Herein, based on the density-functional-theory (DFT), the catalytic performances of a series of single-atom catalysts (SACs) designed by regulating the N-content around coordination center in C3N (TM@N2C2/N3C/N4-C3N (TM = Ti, V, Fe, Co, Ni)), are systematically analyzed and evaluated. Among all the constructed SACs, Ti-centered configurations with fewer d electrons, especially for the Ti@N2C2-C3N, have the remarkable catalytic effect in improving the electron conductivity, trapping soluble polysulfides and accelerating the redox reaction. The in-depth mechanism indicates that the interaction between d orbital of Ti, mainly the splitting dz2, and p orbital of S is the key factor for achieving high-effective adsorption. More importantly, the integral value of crystal orbital Hamiltonian population (ICOHP) of the Li-S bond in the adsorbed Li2S can serve as an excellent descriptor for evaluating the overall catalytic ability of substrates. Our work has vital guiding significance for designing high-performance SACs of Li-S batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call