Abstract

BackgroundFetal development largely depends on thyroid hormone availability and proper placental function with an important role played by placental mitochondria. The biological mechanisms by which thyroid hormones exert their effects on mitochondrial function are not well understood. We investigated the role of fetal thyroid hormones on placental mitochondrial DNA (mtDNA) content and mtDNA methylation. We collected placental tissue and cord blood from 305 mother–child pairs that were enrolled between February 2010 and June 2014 in the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort (province of Limburg, Belgium). Placental mtDNA content was determined by qPCR and placental mtDNA methylation by bisulfite-pyrosequencing in two regions, i.e., the D-loop control region and 12S ribosomal RNA (MT-RNR1). The levels of free thyroid hormones (FT3, FT4) and thyroid-stimulating hormone (TSH) were measured in cord blood.ResultsCord blood FT3 and FT4 were inversely associated with placental mtDNA methylation at the MT-RNR1 (p ≤ 0.01) and D-loop (p ≤ 0.05) regions, whereas a positive association was observed for both hormones with placental mtDNA content (p ≤ 0.04). Assuming causality, we estimated that MT-RNR1 and D-loop methylation mediated, respectively, 77% [indirect effect +14.61% (95% CI 2.64 to 27.98%, p = 0.01)] and 47% [indirect effect +8.60% (95% CI 1.23 to 16.50%, p = 0.02] of the positive association between FT3 and placental mtDNA content. Mediation models with FT4 gave similar results but the estimated effect proportions were smaller compared with those of FT3 (54% and 24%, respectively).ConclusionsWe showed that epigenetic modification at specific loci of the mitochondrial genome could intervene with the thyroid-dependent regulation of mitochondrial DNA copy numbers.

Highlights

  • Fetal development largely depends on thyroid hormone availability and proper placental function with an important role played by placental mitochondria

  • In this study, we report for the first time associations between fetal thyroid hormones and epigenetic modification at specific loci in the mitochondrial genome that could, at least in part, mediate the fetal thyroiddependent regulation of mitochondrial biogenesis in placental tissue

  • Given our epidemiological findings and other experimental research data, it seems that there exist coordinated events between mitochondrial DNA (mtDNA) methylation, mtDNA content, and thyroid hormones

Read more

Summary

Introduction

Fetal development largely depends on thyroid hormone availability and proper placental function with an important role played by placental mitochondria. We investigated the role of fetal thyroid hormones on placental mitochondrial DNA (mtDNA) content and mtDNA methylation. The placenta is a relevant tissue to investigate the interplay between thyroid hormones and mitochondria. This metabolically active organ contains a high number of mitochondria and regulates nutrient, oxygen, and hormonal transfer, allowing for fetal growth. The placenta expresses two types of iodothyronine deiodinases (D2 and D3) that are capable of metabolizing FT4 to FT3 [7], and plays an important role in thyroid hormone homeostasis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call