Abstract

Quinone-based electrodes using carbonyl redox reactions are promising candidates for aqueous energy storage due to their high theoretical specific capacity and high-rate performance. However, the proton storage manners and their influences on the electrochemical performance of quinone are still not clear. Herein, we reveal that proton storage could determine the products of the enol conversion and the electrochemical stability of the organic electrode. Specifically, the protons preferentially coordinated with the prototypical pyrene-4,5,9,10-tetraone (PTO) cathode, and increasing the proton concentration in the electrolyte can improve its working potentials and cycling stability by tailoring the enol conversion reaction. We also found that exploiting Al2(SO4)3 as a pH buffer can increase the energy density of the Zn||PTO batteries from 242.8 to 284.6 Wh kg-1. Our research has a guiding significance for emphasizing proton storage of organic electrodes based on enol conversion reactions and improving their electrochemical performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.