Abstract

Selective photocatalytic transformations of chemicals derived from biomass, such as isobutanol, have been long envisioned for a sustainable chemical production. A strong temperature dependence in the reaction selectivity is found for isobutanol photo-oxidation on rutile TiO2(110). The strong temperature dependence is attributed to competition between thermal desorption of the primary photoproduct and secondary photochemical steps. The aldehyde, isobutanal, is the primary photoproduct of isobutanol. At room temperature, isobutanal is obtained selectively from photo-oxidation because of rapid thermal desorption. In contrast, secondary photo-oxidation of isobutanal to propane dominates at lower temperature (240 K) due to the persistence of isobutanal on the surface after it is formed. The byproduct of isobutanal photo-oxidation is CO, which is evolved at higher temperature as a consequence of thermal decomposition of an intermediate, such as formate. The photo-oxidation to isobutanal proceeds after thermally induced isobutoxy formation. These results have strong implications for controlling the selectivity of photochemical processes more generally, in that, selectivity is governed by competition of desorption vs secondary photoreaction of products. This competition can be exploited to design photocatalytic processes to favor specific chemical transformations of organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.