Abstract

Structural engineering permits the introduction of chirality into organic-inorganic hybrid metal halides (HMHs), which creates a promising and exclusive material for applications in various optoelectronics. However, the optical activity regulation of chiral HMHs remains largely unexplored. In this work, we have synthesized two pairs of lead-free chiral HMHs with a zero-dimensional tetrahedral arrangement, i.e., (R- and S-1-(1-naphthyl)ethylammonium)2CuCl4 and (R- and S-1-(2-naphthyl)ethylammonium)2CuCl4. The magnitude of optical activity in these HMHs can be efficiently modulated as a result of the different magnetic transition dipole moments. Furthermore, these HMHs exhibited effective second-harmonic generation (SHG) and distinct SHG-circular dichroism (CD), with (R-1-(1-naphthyl)ethylammonium)2CuCl4 having an anisotropy factor (gSHG-CD) of up to 0.41. This work not only provides insights into regulating the optical activity and anisotropic SHG effect of lead-free chiral HMHs but also confirms the feasibility of SHG-CD spectroscopy as a promising tool for characterizing the intrinsic optical activity of chiral materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.